1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
| import os.path import torch import torchvision.utils
from dataSet import HorseZebraDataSet import sys from torch.utils.data import DataLoader import torch.nn as nn import torch.optim as optim from Discriminator import Discriminator from Generator import Generator import config import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm from torchvision import utils as vutils
def save_image_tensor(input_tensor: torch.Tensor, filename): input_tensor = input_tensor.clone().detach() input_tensor = input_tensor.to(torch.device("cpu")) input_tensor = input_tensor * 0.5 + 0.5 vutils.save_image(input_tensor, filename)
def train_fn(disc_h, disc_z, gen_z, gen_h, loader, opt_disc, opt_gen, l1, mse, d_scaler, g_scaler): H_reals = 0 H_fakes = 0 loop = tqdm(loader, leave=True) for idx, (zebra, horse) in enumerate(loop): zebra = zebra.to(config.Device) horse = horse.to(config.Device) with torch.cuda.amp.autocast(): fake_horse = gen_h(zebra) D_H_real = disc_h(horse) D_H_fake = disc_h(fake_horse.detach()) D_H_real_loss = mse(D_H_real, torch.ones_like(D_H_real)) D_H_fake_loss = mse(D_H_fake, torch.zeros_like(D_H_fake)) D_H_loss = D_H_fake_loss + D_H_real_loss
fake_zebra = gen_z(horse) D_Z_real = disc_z(zebra) D_Z_fake = disc_z(fake_zebra.detach()) D_Z_real_loss = mse(D_Z_real, torch.ones_like(D_H_real)) D_Z_fake_loss = mse(D_Z_fake, torch.zeros_like(D_H_fake)) D_Z_loss = D_Z_fake_loss + D_Z_real_loss
D_loss = (D_H_loss + D_Z_loss) / 2
opt_disc.zero_grad() d_scaler.scale(D_loss).backward() d_scaler.step(opt_disc) d_scaler.update()
with torch.cuda.amp.autocast(): D_H_fake = disc_h(fake_horse) D_Z_fake = disc_z(fake_zebra) loss_G_H = mse(D_H_fake, torch.ones_like(D_H_fake)) loss_G_Z = mse(D_Z_fake, torch.ones_like(D_Z_fake))
cycle_zebra = gen_z(fake_horse) cycle_horse = gen_h(fake_zebra) cycle_zebra_loss = l1(zebra, cycle_zebra) cycle_horse_loss = l1(horse, cycle_horse)
identity_zebra = gen_z(zebra) identity_horse = gen_h(horse) identity_zebra_loss = l1(zebra, identity_zebra) identity_horse_loss = l1(horse, identity_horse)
G_loss = ( loss_G_Z + loss_G_H + cycle_zebra_loss * config.lambda_cycle + cycle_horse_loss * config.lambda_cycle + identity_horse_loss * config.lambda_identity + identity_zebra_loss * config.lambda_identity )
opt_gen.zero_grad() g_scaler.scale(G_loss).backward() g_scaler.step(opt_gen) g_scaler.update() if idx % 200 == 199: print("loss: ", G_loss.item()) loop.set_postfix(H_real=H_reals/(idx + 1), H_fake=H_fakes/(idx+1))
def saveModel(model, filename): torch.save(model.state_dict(), filename)
def main(): disc_H = Discriminator(in_channels=3).to(config.Device) disc_Z = Discriminator(in_channels=3).to(config.Device) gen_Z = Generator(img_channels=3, num_residuals=9).to(config.Device) gen_H = Generator(img_channels=3, num_residuals=9).to(config.Device) opt_disc = optim.Adam( list(disc_H.parameters()) + list(disc_Z.parameters()), lr=config.learning_rate, betas=(0.5, 0.999) ) opt_gen = optim.Adam( list(gen_H.parameters()) + list(gen_Z.parameters()), lr=config.learning_rate, betas=(0.5, 0.999) ) L1 = nn.L1Loss() mse = nn.MSELoss()
dataset = HorseZebraDataSet(root_zebra=config.train_dir + "/trainB", root_horse=config.train_dir + "/trainA", transform= config.simple_transform) testDataSet = HorseZebraDataSet(root_zebra=config.test_dir + "/testB", root_horse=config.test_dir + "/testA", transform= config.simple_transform) loader = DataLoader( dataset, batch_size=config.batch_size, shuffle=True, ) test_loader = DataLoader( testDataSet, batch_size=4, shuffle=True ) fix_zebras, fix_horses = iter(test_loader).next() fix_zebras = fix_zebras.to(config.Device) fix_horses = fix_horses.to(config.Device)
g_scaler = torch.cuda.amp.GradScaler() d_scaler = torch.cuda.amp.GradScaler() if config.load_num_param > 0: gen_Z.load_state_dict(torch.load("net/gen_z_%d.pth" % config.load_num_param)) gen_H.load_state_dict(torch.load("net/gen_h_%d.pth" % config.load_num_param)) disc_Z.load_state_dict(torch.load("net/disc_z_%d.pth" % config.load_num_param)) disc_H.load_state_dict(torch.load("net/disc_h_%d.pth" % config.load_num_param)) for epoch in range(config.train_num): train_fn(disc_H, disc_Z, gen_Z, gen_H, loader, opt_disc, opt_gen, L1, mse, d_scaler, g_scaler)
saveModel(disc_H, os.path.join("./net", "disc_h_%d.pth" % (epoch + config.load_num_param + 1))) saveModel(disc_Z, os.path.join("./net", "disc_z_%d.pth" % (epoch + config.load_num_param + 1))) saveModel(gen_H, os.path.join("./net", "gen_h_%d.pth" % (epoch + config.load_num_param + 1))) saveModel(gen_Z, os.path.join("./net", "gen_z_%d.pth" % (epoch + config.load_num_param + 1)))
with torch.no_grad(): fix_horses = fix_horses.to(config.Device) fix_zebras = fix_zebras.to(config.Device) fake_horse = gen_H(fix_zebras) fake_zebra = gen_Z(fix_horses) comb = torch.cat([fake_horse, fix_zebras]) comb = torchvision.utils.make_grid(comb, nrow=4) comb2 = torch.cat([fake_zebra, fix_horses]) comb2 = torchvision.utils.make_grid(comb2, nrow=4) save_image_tensor(comb, "./pic/zebra2horse/%d_epoch_zebra2horse.jpg" % (epoch + config.load_num_param + 1)) save_image_tensor(comb2, "./pic/horse2zebra/%d_epoch_horse2zebra.jpg" % (epoch + config.load_num_param + 1))
if __name__ == "__main__": main()
|